On a Conjecture of Carmichael

نویسنده

  • V. L. KLEE
چکیده

V. L. KLEE, JR. 1 Carmichael [ l ] 2 conjectured that for no integer n can the equation (x)=n ( being Euler's totient) have exactly one solution. To support the conjecture, he showed that each n for which there is a unique solution must satisfy a restriction which implies w>10. In this note we prove the validity of restrictions considerably stronger than those of Carmichael, and raise the lower bound on n to 10. We shall denote by X the set of all integers x for which (y)=<l)(x) implies y = x. (If the conjecture is correct, X is empty, and the theorems stated are vacuously satisfied.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Distribution of Carmichael Numbers

Pomerance conjectured that there are x 1− {1+o(1)} log log log x log log x Carmichael numbers up to x. At the time, his data tables up to 25 · 109 appeared to support his conjecture. However, Pinch extended this data and showed that up to 1021, Pomerance's conjecture did not appear well-supported. Thus, we build upon the work of Carl Pomerance and others to formulate an alternative conjecture r...

متن کامل

On Carmichael numbers in arithmetic progressions

Assuming a weak version of a conjecture of Heath-Brown on the least prime in a residue class, we show that for any coprime integers a and m > 1, there are infinitely many Carmichael numbers in the arithmetic progression a mod m.

متن کامل

A remark on Giuga’s conjecture and Lehmer’s totient problem∗

Giuga has conjectured that if the sum of the (n− 1)-st powers of the residues modulo n is −1 (mod n), then n is 1 or prime. It is known that any counterexample is a Carmichael number. Lehmer has asked if φ(n) divides n−1, with φ being Euler’s function, must it be true that n is 1 or prime. No examples are known, but a composite number with this property must be a Carmichael number. We show that...

متن کامل

On the Distributions of Pseudoprimes, Carmichael Numbers, and Strong Pseudoprimes

Building upon the work of Carl Pomerance and others, the central purpose of this discourse is to discuss the distribution of base-2 pseudoprimes, as well as improve upon Pomerance's conjecture regarding the Carmichael number counting function [8]. All conjectured formulas apply to any base b ≥ 2 for x ≥ x0(b). A table of base-2 pseudoprime, 2-strong pseudoprime, and Carmichael number counts up ...

متن کامل

On some generalisations of Brown's conjecture

Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007